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Abstract

A statistical emulator is a fast proxy for a complex computer model which predicts model output at arbitrary parameter
settings from a limited ensemble of training data. Regular grid designs for the training set are commonly used for
their simplicity. However, Latin hypercube designs have well known theoretical advantages in the design of computer
experiments, especially as the dimension of the parameter space grows.

Here we use time series output from a simple Earth system model to compare the influence of these two design
choices on the cross-validation prediction skill of a statistical emulator. We find that an emulator trained on a Latin
hypercube design shows a small but clear improvement in prediction quality relative to an emulator trained on a grid
design. We also find that the Latin hypercube emulator is more accurate than the grid emulator in single-parameter
model sensitivity studies. We conclude with a discussion of ensemble design choices for emulator computer experi-
ments.
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1. Introduction

In climate science it is common to make use of
highly complex computer simulations, such as coupled
atmosphere-ocean general circulation models (GCMs).
GCMs have been coupled to biogeochemical or land
surface models to produce Earth system models. GCMs
require high spatial and temporal resolutions in or-
der to represent important physical climate processes.
They are computationally intensive, sometimes requir-
ing months of computer time to simulate centuries of
real time.

The output of complex models is dependent on many
parametric assumptions, such as the strength of climate
system feedbacks, or the rate of heat transport from the
atmosphere to the oceans. In order to examine the sen-
sitivity of a model to its input parameters, or to quan-
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tify the parametric uncertainty in model projections, it is
necessary to evaluate the model at a variety of plausible
parameter settings. The formidable computational re-
quirements of GCMs preclude a full exploration of their
parameter spaces.

A simpler class of models, the Earth system models
of intermediate complexity (EMICs), has been devel-
oped in part to address this problem (Claussen et al.,
2002). EMICs require only days to weeks of com-
puter time for centennial scale projections. It is pos-
sible to evaluate an EMIC with an ensemble of runs
comprising a few hundred combinations of a hand-
ful of parameters. Scientific uses of EMIC ensem-
bles include, for example, probabilistic projection of
future climate and biogeochemical cycles (Knutti et al.,
2003; Matthews and Keith, 2007; Sokolov et al., 2009),
quantification of past climate feedbacks and biogeo-
chemical cycles (Schneider von Deimling et al., 2006;
Ridgwell et al., 2007; Panchuk et al., 2008), and esti-
mation of ocean mixing processes (Schmittner et al.,
2009). The number of parameters which can be realisti-
cally varied in a finite ensemble is far less than the num-
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ber of adjustable parameters in the model. However, the
model behavior of interest is frequently dominated by a
relatively small subset of key physical parameters.

In a thorough sensitivity or uncertainty analysis, it is
often the case that the ensemble size is only barely large
enough to span the parameter space of interest. (If larger
ensembles are available, a thorough study will typically
expand the number of considered parameters until the
ensemble size is, again, minimally adequate to span the
larger parameter space.) With a limited ability to sam-
ple the space of parameters, the design of an ensemble
requires careful consideration. The location and spac-
ing of design points must be chosen to provide sufficient
information about the model response across the param-
eter space.

Emulators have been developed to make maximum
use of the model information contained in an ensemble.
An emulator is a fast surrogate for a computationally
expensive computer model, which is trained on an en-
semble of model output. It interpolates the ensemble to
predict the model output at parameter settings not in-
cluded in the design. A statistical emulator is an emula-
tor which can estimate the uncertainty in its predictions.
Since an emulator is an approximation to the true model,
it is important to assess the quality of this approxima-
tion. The ability of statistical emulators to produce error
bars for their predictions is therefore valuable.

Examples of emulators (both statistical and non-
statistical) include spline interpolation, parametric re-
gression, artificial neural networks, and nonparametric
Gaussian process regression. Our discussion of emu-
lators focuses exclusively on the last type of emula-
tor, and we use the term “emulator” to refer specifi-
cally to this method of statistical emulation. Gaussian
process (GP) emulators (Kennedy and O’Hagan, 2001)
are a generalization of kriging, a geostatistical inter-
polation technique (Cressie, 1993; Wackernagel, 2003;
Banerjee et al., 2004). Kriging is used to interpolate
point measurements over physical space. A GP emula-
tor interpolates model output over parameter space. In
geostatistical terms, a multivariate GP emulator is anal-
ogous to a form of Bayesian universal cokriging.

Uses of ensembles to explore climate model pa-
rameters range from very large (∼ 105) ensembles
of relatively simple models (Tomassini et al., 2007)
to small (∼ 50) ensembles of more complex models
(Ridgwell et al., 2007). Applications of non-statistical
climate model emulators have recently emerged (e.g.,
Knutti et al., 2003). The use of GP statistical emulators
in climate science is relatively new (cf. Challenor et al.,
2006; Sansó et al., 2008).

Two ensemble types which have been extensively

used in the design of computer experiments are grids
(also known as Cartesian products) and Latin hyper-
cubes (LHs) (McKay et al., 1979). Latin hypercube de-
signs (LHDs) have good theoretical properties when
compared to grids, as discussed in the next section.
However, the practical effect of different designs on the
emulation of a climate or Earth system model is not well
studied. Here we compare the predictive skill of a multi-
variate climate model emulator trained on grid and Latin
hypercube ensemble designs.

2. Design choices

A common ensemble design is a regular grid (Fig-
ure 1, left panel). A few equally spaced values are se-
lected for each parameter. Every combination of val-
ues for each parameter is included in the grid design.
Grid designs are popular for several reasons. First, they
are the simplest possible designs, and require no expert
judgment other than the parameter ranges and ensem-
ble size. Second, they facilitate single-parameter sen-
sitivity studies. To determine the response of a model
to changes in a single parameter, it is possible to move
from point to point in a grid along a single dimension,
holding all other parameters fixed. Third, it is easy to in-
tegrate quantities over a regular grid by Riemann sum-
mation. This is important in the Bayesian calibration
of computer models (Kennedy and O’Hagan, 2001),
where marginalization integrals are necessary to cal-
culate the observationally calibrated probability distri-
butions of individual parameters (Oakley and O’Hagan,
2002).
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Figure 1: Regular grid (left) and Latin square (right) designs for a
p = 2 dimensional, N = 9 member ensemble.

Given these advantages, simple grids are popular de-
sign choices. However, they have several drawbacks
(Santner et al., 2003; Husslage et al., 2008). A key lim-
itation of grids is their “collapsing” property: mul-
tiple grid points can have the same coordinate value
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when projected onto a parameter axis. This is illus-
trated in Figure 1 (left panel), where three different grid
points share each value of either parameter. In a two-
dimensional grid, the collapsing property means that
there is more than one design point in each row and col-
umn.

The collapsing property of grids has several conse-
quences. First, the model is evaluated at only a few val-
ues for any parameter, since many grid points share the
same small set of possible values. A grid design cannot
reveal model behavior at any but a limited number of
parameter settings, which can be problematic for emu-
lation if the model output varies rapidly between design
points. Second, the ensemble size grows exponentially
with the number of parameters. For example, a four-
parameter grid of size ≈ 100 can sample no more than
three values for each parameter 34 = 81 ≈ 100. As in
the first point, this severely limits the ability of a grid
to sample intermediate parameter values. Conversely,
for a limited ensemble size, a grid design can only ex-
plore low dimensional parameter spaces. Third, models
are often more sensitive to some parameters than others.
If an insensitive parameter is included in a grid design,
many model evaluations are wasted altering a parame-
ter whose value does not affect the model output. Due
to the collapsing property, two grid points which differ
only by an insensitive parameter are effectively the same
point, because no other parameters which can affect the
output are varied.

Latin hypercube (LH) designs have long been used
as an alternative to grids in the design of computer ex-
periments (for a review of ensemble design methods,
see Santner et al., 2003). Like a regular grid, a Latin
hypercube partitions each parameter range into equally
spaced values. Unlike a grid, the number of partitions is
equal to the size of the ensemble. Latin hypercubes are
constructed to avoid the collapsing property of grids: no
two LH design points share the same value for any pa-
rameter. In the case of a two-dimensional design (Latin
square), this property is equivalent to each row and each
column containing exactly one design point (Figure 1,
right panel). Unlike grids, Latin hypercubes ensemble
sizes need not grow exponentially with the dimension-
ality of the parameter space, permitting a LH design to
explore more parameters than a grid using the same en-
semble size.

Grid and Latin hypercube designs are compared in
Figure 1. In both cases, the ensemble consists of N = 9
design points, with p = 2 parameters varied. Both de-
signs cover the same range for each parameter, the in-
terval [1,3]. The grid is evaluated at only three values of
each of the two parameters. The Latin square is evalu-

ated at nine different values of each parameter, the max-
imum number possible in an ensemble of size 9.

There are many different LH designs for a given pa-
rameter space, corresponding to different permutations
of design points. (In Figure 1, right panel, there are
many ways of placing exactly one point in each row
and column.) A degenerate Latin square design puts
all the points on the diagonal, which has obvious dif-
ficulty covering the entire space. We use “maximin”
LH designs (Morris and Mitchell, 1995), generated us-
ing the GEM-SA software package,1 which maximize
the minimum distance between neighboring points. In-
tuitively, a maximin design spreads points as far away
from each other as possible, to maximize their cover-
age of parameter space. This prevents design points
from clustering too close together and over-representing
some regions of parameter space. The GEM-SA soft-
ware uses a stochastic simulated annealing algorithm
(Morris and Mitchell, 1995) to generate a large number
of candidate LH designs and chooses the one which best
satisfies the maximin distance criterion.

It is important to note the differences between how
Latin hypercube designs are used to train emulators,
and how they traditionally have been used in model un-
certainty analysis. Historically, Latin hypercubes have
been commonly used as an efficient method to randomly
sample the model output from some prior probability
distribution on parameter space. The marginal proba-
bility distribution for each parameter is “stratified” into
equal probability bins, from which a Latin hypercube is
constructed. Stratified LH sampling is a form of im-
portance sampling and concentrates samples in high-
probability regions of parameter space.

By contrast, an emulator simply needs to be trained
to reproduce model output based on the model behav-
ior at known inputs. Because the input parameters are
not treated as uncertain, there is no need to sample ran-
domly from parameter space or to specify any kind of
prior probability distribution on model parameters. The
Latin hypercubes discussed here are equivalent to strati-
fied LH sampling from a bounded uniform distribution.
However, there is no need for them to honor this partic-
ular distribution or any distribution. To train an accu-
rate model emulator it may be preferable to concentrate
design points in regions of parameter space where the
model output is most variable, or the output covariance
structure is most uncertain. These regions of parameter

1Kennedy, M.C., 2004. Description of the Gaussian process
model used in GEM-SA. GEM-SA help documentation, Department
of Probability and Statistics, University of Sheffield, Sheffield, 3 pp.
http://www.ctcd.group.shef.ac.uk/gem.html.
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space may have nothing to do with the parameter set-
tings which the user may believe to be most probable.

3. Methods

3.1. Earth system model

Emulators are designed to be used with complex,
computationally intensive models which can be evalu-
ated at a limited number of parameter settings. For the
purposes of this paper, we instead work with a compu-
tationally efficient simple Earth system model (Urban
and Keller, 2010, in revision).2 An emulator is unnec-
essary for this model, which requires less than a second
of CPU time per model evaluation. However, its speed
makes it possible to construct and evaluate many differ-
ent ensemble designs, so for the purposes of this paper
we treat its output as representative of a more complex
EMIC we might wish to emulate.

We use the DOECLIM climate model, a zero-
dimensional energy-balance model coupled to a one-
dimensional diffusive ocean (Kriegler, 2005). The cli-
mate model is coupled to the NICCS nonlinear im-
pulse response model of the terrestrial/ocean carbon cy-
cle (Hooss et al., 2001). Together these two coupled
models comprise our Earth system model. The cou-
pled model is forced in years 1850–2000 with historic
CO2 emissions, non-CO2 greenhouse gas and aerosol
concentrations, solar irradiance, and volcanic forcings;
these data are taken from references cited in Kriegler
(2005). The model outputs three globally averaged an-
nual time series: surface temperature anomaly, ocean
heat anomaly, and atmospheric CO2 concentration.

3.2. Ensemble design

We vary four parameters in the model: (1) Q10,
the temperature sensitivity of CO2 respiration from mi-
crobial decomposition in soil (Davidson and Janssens,
2006); (2) κ, the vertical diffusivity of heat in the ocean
(Hansen et al., 1985); (3) S , the equilibrium climate
sensitivity (temperature response) to a doubling of at-
mospheric CO2 (Knutti and Hegerl, 2008); and (4) α,
a multiplicative scale factor on the cooling influence
of industrial aerosols, including the indirect effect on
clouds (Lohmann and Feichter, 2005). These param-
eters were chosen for their influence on the present

2Urban, N.M., Keller, K., 2010. Probabilistic hindcasts and pro-
jections of the coupled climate, carbon cycle, and Atlantic meridional
overturning circulation systems: a Bayesian fusion of century-scale
observations with a simple model. Tellus A, in revision.

and future responses of the coupled climate-carbon cy-
cle system. We collectively refer to the parameters as
{pi} = {Q10, κ, S , α}, i = 1, . . . , 4.

To make the emulation challenging, we train the em-
ulator using ensembles with fewer than 100 members.
We construct two training ensemble designs, a grid and
a Latin hypercube. To construct the grid we choose
three evenly spaced values for each of the four param-
eters, in the ranges 0.5–4.5 (Q10), 0.5–3.5 cm2/s (κ),
1–7 ◦C (S ), and 0–2 (α). This gives a 34 = 81 mem-
ber ensemble. A grid of 3p members is the coarsest
grid one would typically use, corresponding to picking
a low, medium, and high value for each parameter. We
generate a maximin Latin hypercube design of the same
size over the same parameter ranges. These designs are
shown in Figure 2.
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Figure 2: Designs of p = 4 dimensional, N = 81 member ensembles.
Depicted are scatterplots of the designs projected onto two-parameter
subspaces. Lower left: Grid design. Upper right: Latin hypercube
design. Note each point in grid scatterplots represents 32 = 9 different
ensemble points: due to a grid design’s collapsing property, unique
points in 4-dimensional parameter space can project onto identical
points in a 2-dimensional subspace.

To evaluate the predictive skill of the emulator, we
construct a separate validation ensemble of 40 mem-
bers, distributed in a Latin hypercube over the interior
of the parameter ranges. We choose a Latin hypercube
design over a grid so that a wider variety of inter-point
distances can be represented in the validation ensem-
ble. The model output from this ensemble is withheld
when training the emulator with either of the two train-
ing designs. The emulator skill is judged by its ability
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to predict the known output at these unseen validation
points.

3.3. Statistical emulator

The purpose of the emulator is to interpolate the Earth
system model output between ensemble design points.
Although the model output is a deterministic function of
the input parameters, it is unknown except at the points
in the ensemble design. Taking the Bayesian approach,
we represent the model as an unknown (random) func-
tion η(.) and represent the uncertainty surrounding it by
means of a stochastic prior process.

The model has multiple time series outputs, so we
use a multivariate Gaussian process prior, based on that
used by Conti and O’Hagan (2007). We adapt their em-
ulator structure to include time as an additional input.
That is, instead of treating each of the three output time
series as a vector function of the input parameters, we
treat the three model outputs each as a scalar function
of both the input parameters and time. For a given time
t and configuration of input parameters p we form an
augmented input vector x = (p, t), and the correspond-
ing three scalar outputs are η(x) ∈ R

3.
The Gaussian process prior describes our beliefs

about the model output, i.e. the function η(.), before
having seen the ensemble of training data. The prior
distribution for η(.), conditional on some hyperparame-
ters {B,Σ, φ}, is the three-variate Gaussian process

η(.)|B,Σ, φ ∼ GP3[m(.),Σc(., .)] . (1)

The GP prior has two components: the mean function
m(.) and the 3 × 3 matrix covariance function Σc(., .).
The mean function is m(x) = BT h(x), a linear combina-
tion of r regressors on the inputs (h(x)), with a matrix
of unknown regression coefficients B. The purpose of
including a non-constant mean function is to provide a
surface which represents global trend of the model out-
put across input space. This helps the emulator to inter-
polate in regions of parameter space which are sparsely
sampled by the training ensemble. We assume a linear
trend surface with parameter-time interaction terms, so
that h(x) = h(p, t) is a linear combination of the r = 10
regressors 1, {pi}, t, and {pit}. We fit independent regres-
sions for each output type, so the regression coefficients
B form a 10 × 3 matrix.

The prior covariance function is the product of an
output covariance matrix Σ and a parameter-time cor-
relation function c(., .) with correlation lengths set by
roughness hyperparameters φ. For the correlation func-
tion we use a squared-exponential (“Gaussian”) func-

tion:

c(x, x′) =
5∏

i=1

exp[−φi(xi − x′i )
2] . (2)

The squared-exponential correlation function is mathe-
matically convenient and Kennedy and O’Hagan (2001)
found that, in practice, emulation is robust to the form
of the correlation function when the model output be-
haves smoothly across parameter space. (This covari-
ance assumption may not be suitable for the emulation
of chaotic climate models, which are not considered
here.) The 3×3 output covariance matrix Σ̂ specifies the
output variances and the between-output covariances.
The roughness hyperparameters {φ1, ..., φ4} determine
the correlation length scale of the prior process in each
direction in parameter space (with characteristic length
scale 1/

√
φ). The correlation length scale over time is

determined by φ5. Correlation length scales specify the
rate at which our uncertainty about the model output in-
creases as we move away from a known design point.
As such, they describe how ‘smooth’ we expect the pro-
cess to be. Smaller roughnesses correspond to longer
correlation lengths and smoother processes.

The final step in prior model specification is to choose
prior distributions for the hyperparameters. For B
and Σ we assume there is little prior knowledge and
use the conventional ‘non-informative’ priors given in
Conti and O’Hagan (2007). For the correlation length
scales we elicit plausible ranges from the model author,
and use a uniform prior distribution on the {φi} over
those ranges.

Given the above modeling choices, the prior is up-
dated (“trained”) using the ensemble output data D, a
nq × 3 matrix. For an ensemble with n design points,
each column of D represents one of the three types of
model output, stacked into a block vector containing n
time series each q years in length. The emulator itself
is the resulting GP posterior distribution, a multivariate
Student-t process with n − r degrees of freedom which
is conditioned to exactly interpolate the ensemble data:

η(.)|D, φ ∼ T3[m∗(.), Σ̂c∗(., .); n − r] , (3)

where

m∗(x) = B̂T h(x) + (D − HB̂)T A−1t(x) , (4)

c∗(x, x′) = c(x, x′) − tT (x)A−1t(x′) (5)

+[h(x)−HT A−1t(x)]T (HT A−1H)−1[h(x′) − HT A−1t(x′)] ,

B̂ = (HT A−1H)−1HT A−1D , (6)

Σ̂ = (n − r − 4)−1(D − HB̂)T A−1(D − HB̂) , (7)
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and where A = {c(xi, x j)} is the nq × nq ma-
trix of correlations between design points, tT (x) =
[c(x, x1), ...., c(x, xn)] is the nq× 1 vector of correlations
between the prediction point and all the design points,
and HT = [h(x1), ..., h(xn)] is the r×nq matrix of regres-
sors in the prior mean function. The Bayesian updating
provides generalized least squares (GLS) posterior esti-
mates B̂ and Σ̂ of the response surface regression coeffi-
cients and residual output covariance.

The posterior mean, m∗(x), provides point predictions
of the model output at any specified input x. The poste-
rior mean is identical to the ensemble output D at points
which are in the training ensemble, and interpolates D at
other points not in the ensemble. The posterior covari-
ance, Σ̂c∗(., .), provides estimates of the uncertainty in
the predictions. The posterior variance vanishes at ev-
ery training point in D, because there is no uncertainty
about the known output in the model ensemble. It is im-
portant to note that the posterior covariance represents
the emulator’s uncertainty about the model output at a
new point not contained in the emulator’s training en-
semble, and does not imply the climate model itself has
stochastic or chaotic uncertainty.

As noted above, the hyperparameters B and Σ are
inferred analytically by Bayesian updating. On the
other hand, the likelihood function for {φi} is highly
intractable and analytic Bayesian inference is not pos-
sible. Instead we calculate point estimates of the {φi}
and treat them as fixed (known) in the prior to poste-
rior analysis. In kriging one often estimates correlation
length scales or range parameters by variogram analy-
sis. In situations with smooth model output and sparse
data, as is the case here, we prefer to estimate each {φi}
by its posterior mode. Since we use a uniform prior
distribution, posterior mode estimation is equivalent to
the maximum likelihood estimation with the parameters
constrained to be within the elicited plausible ranges.

4. Results

4.1. Model output
Any test of an emulator should begin with an inspec-

tion of the ensemble output on which the emulator is
to be trained. An examination of the output clarifies
the behavior of the model, verifies whether the output
conforms to the assumptions of the emulator, and ex-
poses problems such as parameter combinations which
produce numerical instabilities in the model. Figure 3
shows the time series model output for all runs in the
grid and Latin hypercube ensembles.

Several features of the model output are of inter-
est. First, the model output appears highly predictable.

Each of the three outputs increases almost monotoni-
cally with time for all of the ensemble members. The
time series for different ensemble members have simi-
lar functional forms. For example, the temperature for
runs with high warming is more or less a rescaling of
the temperature for runs with low warming. This im-
plies that any emulator is likely to be able to predict the
model output well regardless of the design, as we con-
firm in Section 3.3.

A second, related point is that while the training en-
sembles may be sparse in parameter space, the ensem-
ble output is relatively dense in response space. The
training runs in both designs span a continuous range
of responses from small to large, with few obvious gaps
where no output exists in the ensemble. This also sug-
gests that both emulators should work well.

A third feature of the model output is that it is non-
stationary in time. The ensemble output shows very lit-
tle variation at early times, because all the runs were
started with the same initial conditions, and large varia-
tion at late times. This could potentially prove trouble-
some for a statistical emulator which assumes the out-
put is stationary in time (given the mean function), as
ours does. However, we show in Sections 4.2 and 4.3
that the emulator’s predictive skill is nevertheless quite
good. This due to the smoothness of the model output
noted above, and because violations of stationarity are
expected to affect the precision of the emulator predic-
tion error bars more than the accuracy of the prediction
itself.

Fourth, the grid ensemble shows a somewhat larger
variation in model output than does the Latin hypercube
design. This is because the grid has more points on the
boundaries of parameter space, with more extreme pa-
rameter values producing stronger model responses. An
emulator trained on the Latin hypercube may have dif-
ficulty predicting the largest responses from points near
the boundary, as it will have to extrapolate rather than
interpolate. Our results in the following sections sug-
gest this is not the case: the LHD emulator can predict
boundary responses rather well and its overall predic-
tion quality is high.

4.2. Emulator validation
To test the skill of the emulator, we train it on the grid

and Latin hypercube ensembles and compare its predic-
tions to the known model output in an independent vali-
dation ensemble. The validation ensemble and emulator
construction are described in Sections 3.2 and Sections
3.3, respectively.

We use a root mean squared error (RMSE) skill met-
ric to assess model skill, with the average taken over
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Figure 3: Model output for all 81 members in grid (left, red) and
Latin hypercube (right, blue) training ensembles, for global temper-
ature anomaly (top), ocean heat anomaly (middle), and atmospheric
CO2 concentration (bottom).

time. In Figure 4 we compare the predictive skill of the
two emulators on the same 40-member validation en-
semble. The Latin hypercube emulator is clearly a bet-
ter predictor than the grid emulator for all three output
types: its RMS error is several times smaller for almost
every prediction in the validation set.

Examples of time series predictions for the two em-
ulators are given in Figure 5. For each emulator and
output type, the validation runs are sorted by predictive
skill. The worst predicted time series is shown along
with the prediction at the 25th percentile of skill and the
median quality prediction. (The 75th percentile and best
predictions are not shown because the emulator quality
is nearly perfect in virtually all cases.) The results con-
firm the general superiority of the Latin hypercube em-
ulator over the grid emulator. The LHD emulator pre-
diction is visually indistinguishable from the true model
output in almost all cases. However, both emulators
appear to perform well in most cases. The emulators
show the best skill (smallest error) in predicting CO2.
This probably reflects the fact that the model output is
smoothest in CO2 (see Figure 3).

A statistical emulator not only predicts the computer
model output, but also gives an estimate of its prediction
error. The emulator quality should be judged not only
by its predictive accuracy (bias), but also by the preci-
sion of its error estimates (variance). Figure 5 shows
the 95% predictive credible intervals of the two emula-
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Figure 4: Validation plots of emulator prediction skill for grid (red cir-
cles) and Latin hypercube (blue dots) designs, for global temperature
anomaly (top), ocean heat anomaly (middle), and atmospheric CO2
concentration (bottom). Prediction skill is measured by root mean
squared error (RMSE). The 40 validation runs are sorted in order of
decreasing RMSE for temperature.

tors as shaded bands. A credible interval is the Bayesian
version of a frequentist confidence interval. In Figure 5,
the black curves should lie within the shaded bands for
approximately 95% of the years.

The Latin hypercube-trained emulator has much
smaller predictive intervals than the grid-trained emu-
lator. In most cases the intervals are smaller than the
line width in the plot. This reflects the high precision
of the emulator. However, for the worst-fitting emulator
predictions, these small intervals are overconfident: the
true model output does not lie within them.

The grid emulator has larger predictive intervals than
the LHD emulator, reflecting its relative imprecision.
Overconfidence is also visible in the grid emulator. In
many of the plots the true model output lies outside, or
only barely inside, the grid emulator confidence inter-
vals. In several cases the grid intervals have the opposite
problem of underconfidence: they are much wider than
necessary to enclose 95% of the data (e.g., in some of
the CO2 predictions), given the accuracy of the emula-
tor. (Some of this may be due to the emulator’s station-
ary covariance assumption. By assuming that the prior
uncertainty is equal at all points in time, the emulator
can overestimate the small uncertainty in model output
at early times.) In general, the Latin hypercube emula-

7



tor appears to produce better-calibrated uncertainty es-
timates than does the grid emulator.

4.3. Single-parameter scans

As discussed in Section 2, one commonly touted
virtue of grid designs is the ease with which they facil-
itate single-parameter sensitivity studies. A linear scan
of model output along a parameter dimension, altering
one parameter’s value while holding the others fixed,
can be achieved by moving from one grid point to the
next. This cannot happen in a Latin hypercube design,
since there is only one design point for each parameter
value, and therefore it is impossible to hold a parameter
fixed while moving from one point to another.

Despite this supposed weakness of Latin hypercube
designs, it is not clear whether a grid design is the better
choice for parameter scans. In a 34 grid, for instance,
a parameter scan intersects at most three grid points.
A grid-trained emulator which predicts the model re-
sponse along a scan line is limited by extremely sparse
data availability. While no more than one point in a
Latin hypercube design can lie along any given scan
line, there may be many design points which are close to
the scan line. It is thereby possible that an LHD emula-
tor can outperform a grid emulator for single-parameter
sensitivity studies.

To test this hypothesis, we conduct a linear scan of
each of the four parameters around the central point in
our grid design, {Q10, κ, S , α} = {2.5, 2, 4, 1}. In Figure
6 we plot the emulator-predicted model response in the
year 2000 for each of the three output types, as a func-
tion of the parameter varied in the scan. The predictions
are evaluated against the true model output at 40 valida-
tion points for each scan.

By definition, the grid emulator prediction is perfect
at the three points in each scan which coincide with grid
training points (the black dots in Figure 6). However,
for intermediate points, the predictions of the LHD em-
ulator are not only superior to those of the grid emulator,
but also in almost every case are visually indistinguish-
able from the true model output.

5. Discussion

In this case study, a Latin hypercube ensemble design
produces a better statistical emulator of an Earth system
model than does a regular grid design. The LH-trained
emulator is superior to the grid emulator in terms of root
mean squared prediction error, the precision of its pre-
dictive uncertainty intervals, and its ability to conduct
single-parameter model sensitivity studies. The latter is

an application for which grid designs are often favored.
Our results suggest this preference for grids should be
reconsidered.

This study comes with a number of caveats. Although
the grid-trained emulator performs worse than the LHD
emulator, in practical terms there is not a large differ-
ence between their predictions. We intentionally use
a very coarse grid design, and the difference between
grid and Latin hypercube emulators is likely to disap-
pear with a finer grid, if the number of varied parame-
ters is constant. In contrast, the superiority of a Latin
hypercube emulator is likely to increase if the number
of ensemble parameters is larger.

However, the task of emulation is particularly easy
for the simple model used here because of the smooth-
ness of its outputs over parameter space. Such smooth-
ness is likely to be a general feature of many climate
time series which show a gradually increasing response
to anthropogenic forcing. The emulator could also po-
tentially be improved by using the forcing input, rather
than time, as a regressor in the prior mean function.
When emulation is easy, even a coarse grid design will
do well. Not all climatic time series are as easily emu-
lated as those studied here, particularly when the system
is very nonlinear or has large noise. Emulation will also
be more difficult for multidimensional spatial or space-
time fields. In more difficult emulation tasks, a Latin
hypercube ensemble design may show a greater practi-
cal superiority than it does in this study.

6. Conclusions

The analysis of computer model sensitivity and un-
certainty requires that the model can be evaluated
at many different combinations of parameter settings.
Complex computer models are too computationally in-
tensive to permit a full exploration of model parameter
space. A statistical emulator is a tool to predict com-
puter model output at unseen parameter settings by in-
terpolating the output from a training ensemble of lim-
ited size. Different choices for the design of the training
ensemble may improve or degrade the quality of the re-
sulting emulator.

In this case study, a Latin hypercube design shows a
small but clear advantage over a regular grid design for
training a statistical emulator of an Earth system model.
This advantage persists when conducting single param-
eter model sensitivity studies, an application for which
grid designs have commonly been preferred.

It should be noted that Latin hypercubes may not
always prove a superior design choice. If the ensem-
ble output is to be used for purposes other than model
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emulation, a grid design can retain the advantages dis-
cussed in Section 2. Simple sensitivity studies and
model-data comparisons can be carried out more eas-
ily with a regular grid. It may be that no more com-
plex analysis is needed. If it is not known in advance
whether an emulator will be constructed for the planned
ensemble, a simpler grid design could be warranted.
Also, the Cartesian product structure of a grid can speed
the matrix inversions required in statistical emulation
(Kennedy and O’Hagan, 2001), so computational gains
are possible with a grid design although emulator accu-
racy may suffer. But improved speed may be moot if the
parameter space is of high enough dimension that a grid
design cannot adequately cover it.

However, based on the case study in this paper,
we recommend that Latin hypercube designs generally
should be preferred over grid designs when constructing
a statistical emulator from an ensemble of model output.
As far as emulator skill is concerned, grid designs have
no obvious advantage over Latin hypercube designs. An
emulator can be trained with equal ease on a design of
any form, so the simplicity of a grid is irrelevant. Sin-
gle parameter scan predictions are equally simple for an
emulator with any kind of design, as are marginalization
integrals via Markov chain Monte Carlo. Latin hyper-
cubes are not difficult to generate, have good theoretical
properties, and their predictive superiority is borne out
in practice (Section 4).

We conclude by noting that although we have shown
that Latin hypercubes are good candidates for the de-
sign of an emulator training ensemble, there are numer-
ous other space filling designs which have not been dis-
cussed here. For example, designs based on Sobol’ se-
quences are sometimes used (e.g. Santner et al., 2003)
as alternatives to Latin hypercubes. A Sobol’ sequence
is a quasirandom sequence of numbers that can be
shown to fill an interval uniformly for large samples
(Sobol’, 1976). The advantage of using a Sobol’ se-
quence design is that it can built sequentially. If it is
later decided that a larger ensemble is desired, a longer
Sobol’ sequence can be constructed by extending an ex-
isting sequence. LH designs, on the other hand, must be
recomputed from scratch if a larger design is required,
and will not share any points in common with a smaller
LH design. The disadvantage of Sobol’-sequence based
designs is that their small sample properties are not
clear, and unlike LH and grid designs, they do not have
the guarantee of filling each parameter dimension uni-
formly.
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Figure 5: Validation plots for temperature anomaly (top), ocean heat
anomaly (middle), and CO2 concentration (bottom). For each output
type, upper row shows grid emulator prediction (red), and lower row
shows Latin hypercube emulator prediction (blue). Black curves are
true model output at validation point. Shaded areas are 95% predic-
tive credible intervals quantifying statistical uncertainty in emulator
prediction. Depicted are validation points with worst, 25 percentile,
and 50 percentile prediction quality (as measured by RMSE) for each
emulator. Note vertical scale of plots differs between panels.
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Figure 6: Single parameter sensitivity scans for grid (red) and Latin hypercube (blue) designs, compared to true validation model output (black).
Each plot shows variation in model output in year 2000 as a single model parameter is varied, with all others held fixed. The black dots are model
output at three grid points intersecting each scan. Depicted is output for temperature (top), ocean heat (middle), and CO2 (bottom), for each of four
parameters varied about a central point {Q10, κ, S , α} = {2.5, 2, 4, 1}. Note vertical scale of plots differs between panels.
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